Novel Bioactive Paulomycin Derivatives Produced by Streptomyces albus J1074.

نویسندگان

  • Jorge Fernández-De la Hoz
  • Carmen Méndez
  • José A Salas
  • Carlos Olano
چکیده

Four novel paulomycin derivatives have been isolated from S. albus J1074 grown in MFE culture medium. These compounds are structural analogs of antibiotics 273a2α and 273a2β containing a thiazole moiety, probably originated through an intramolecular Michael addition. The novel, thiazole, moiety-containing paulomycins show a lower antibiotic activity than paulomycins A and B against Gram-positive bacteria. However, two of them show an improved activity against Gram-negative bacteria. In addition, the four novel compounds are more stable in culture than paulomycins A and B. Thus, the presence of an N-acetyl-l-cysteine moiety linked to the carbon atom of the paulic acid isothiocyanate moiety, via a thioester bond, and the subsequent intramolecular cyclization of the paulic acid to generate a thiazole heterocycle confer to paulomycins a higher structural stability that otherwise will conduce to paulomycin degradation and into inactive paulomenols.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New insights into paulomycin biosynthesis pathway in Streptomyces albus J1074 and generation of novel derivatives by combinatorial biosynthesis

BACKGROUND Streptomyces albus J1074 produces glycosylated antibiotics paulomycin A, B and E that derive from chorismate and contain an isothiocyanate residue in form of paulic acid. Paulomycins biosynthesis pathway involves two glycosyltransferases, three acyltransferases, enzymes required for paulic acid biosynthesis (in particular an aminotransferase and a sulfotransferase), and enzymes invol...

متن کامل

Rational engineering of Streptomyces albus J1074 for the overexpression of secondary metabolite gene clusters

BACKGROUND Genome sequencing revealed that Streptomyces sp. can dedicate up to ~ 10% of their genomes for the biosynthesis of bioactive secondary metabolites. However, the majority of these biosynthetic gene clusters are only weakly expressed or not at all. Indeed, the biosynthesis of natural products is highly regulated through integrating multiple nutritional and environmental signals perceiv...

متن کامل

Identification and Analysis of the Paulomycin Biosynthetic Gene Cluster and Titer Improvement of the Paulomycins in Streptomyces paulus NRRL 8115

The paulomycins are a group of glycosylated compounds featuring a unique paulic acid moiety. To locate their biosynthetic gene clusters, the genomes of two paulomycin producers, Streptomyces paulus NRRL 8115 and Streptomyces sp. YN86, were sequenced. The paulomycin biosynthetic gene clusters were defined by comparative analyses of the two genomes together with the genome of the third paulomycin...

متن کامل

Exploring the biocombinatorial potential of benzoxazoles: generation of novel caboxamycin derivatives

BACKGROUND The biosynthesis pathway of benzoxazole compounds caboxamycin and nataxazole have been recently elucidated. Both compounds share one of their precursors, 3-hydroxyanthranilate (two units in the case of nataxazole). In addition, caboxamycin structure includes a salicylate moiety while 6-methylsalycilate is the third scaffold in nataxazole. Pathways cross-talk has been identified in ca...

متن کامل

Chromosomal position effect influences the heterologous expression of genes and biosynthetic gene clusters in Streptomyces albus J1074

BACKGROUND Efforts to construct the Streptomyces host strain with enhanced yields of heterologous product have focussed mostly on engineering of primary metabolism and/or the deletion of endogenous biosynthetic gene clusters. However, other factors, such as chromosome compactization, have been shown to have a significant influence on gene expression levels in bacteria and fungi. The expression ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 22 10  شماره 

صفحات  -

تاریخ انتشار 2017